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Abstract. A new operator-based condition for distinguishing classical from nonclassical states

of quantized radiation is developed. It exploits the fact that the normal ordering rule of
correspondence to go from classical to quantum-dynamical variables does not in general maintain
positivity. It is shown that the approach naturally leads to distinguishing several layers of
increasing nonclassicality, with more layers as the number of modes increases. A generalization
of the notion of sub-Poissonian statistics for two-mode radiation fields is achieved by analysing
completely all correlations and fluctuations in quadratic combinations of mode annihilation and
creation operators conserving the total photon number. This generalization is nontrivial and
intrinsically two-mode as it goes beyond all possible single mode projections of the two-mode
field. The nonclassicality of pair-coherent states, squeezed vacuum and squeezed thermal states
is analysed and contrasted to one another, comparing the generalized sub-Poissonian statistics
with extant signatures of nonclassical behaviour.

1. Introduction

Electromagnetic radiation is intrinsically quantum mechanical in nature. Nevertheless it has
been found extremely fruitful, at both conceptual and practical levels, to designate certain
states of quantized radiation as being essentially ‘classical’ and others as being ‘nonclassical’
[1]. It is the latter that show the specific quantum features of radiation most sharply. Some
of the well known signs of nonclassicality in this context are quadrature squeezing [2],
antibunching [3] and sub-Poissonian photon statistics [4]; none of which can be accounted
for by a classical statistical ensemble of solutions of the classical Maxwell equations. Phase-
space distribution functions such as the diagonal coherent state distribution function, the
Wigner function etc are central to such a classification and recently, there have been several
experiments to directly reconstruct such functions and thus locate nonclassicality through
them [5].

The purposes of this paper are to present a new physically equivalent way of
distinguishing classical from nonclassical states of radiation, dual to the customary definition
and based on operator properties; to point out the existence of several levels of classical
behaviour, with a structure that gets progressively more elaborate as the number of modes
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increases; and finally to give a complete discussion of signatures of nonclassical photon
statistics for two-mode fields, working at the level of fluctuations in photon numbers.

For single-mode fields, the nonclassical states further divide into strongly nonclassical
and weakly nonclassical. The nonclassicality of strongly nonclassical states is already
revealed via the expectation values of phase-insensitive operators while it is hecessary to
consider phase-sensitive operators to unearth the nonclassicality of weakly nonclassical
states. The consequences of strong nonclassicality can be measured in a rather interesting
way by mixing the signal with a local oscillator having random phase as has been done
recently [6]. Generalizations of similar experimental schemes will be useful to study levels
of nonclassicality for two-mode radiation and to measure the intrinsically two-mode sub-
Poissonian statistics introduced by us.

The contents of this paper are arranged as follows. In section 2 we develop a criterion
based on operator expectation values, to distinguish between classical and nonclassical states
of radiation. The basic idea is that the normal ordering rule of correspondence between
classical dynamical variables and quantum operators, while being linear and translating
reality into hermiticity, does not respect positivity. If this potential nonpositivity does not
show up in the expectation values of operators in a certain state, then that state is classical;
otherwise it is nonclassical. Section 3 explores this new approach further and shows that,
as the number of independent modes increases, the classification of quantum states gets
progressively finer; several levels of nonclassicality emerge. This is shown in detail for one
and two mode fields and the trend becomes clear. Section 4 analyses in complete detail the
properties of two-mode photon-number fluctuations, stressing the freedom to choose any
normalized linear combination of the originally given modes as a variable single mode. The
well known Mandel parameter criterion [7] for sub-Poissonian statistics for a single-mode
field is extended in full generality to a matrix inequality in the two-mode case. It is shown
that certain consequences of this inequality transcend the set of all single-mode projections of
it and are thus intrinsically two-mode in character. Explicit physically interesting examples
of this situation are provided, and the well known pair-coherent states are also examined
from this point of view. Section 5 presents some concluding remarks.

2. The distinction between classical and nonclassical states—an operator criterion

We deal for simplicity with states of a single-mode radiation field, though our arguments
generalize immediately to any number of modes. The photon creation and annihilation
operatorsit anda obey the customary commutation relation

[a,a'] = aat —ata = 1. (2.1)

Coherent stately) are right eigenstates @f with a (generally complex) eigenvalue they

are related to the statés) of definite photon number (eigenstatesadf) in a well known

way. A general (pure or mixed) state of the one-mode field is described by a corresponding
normalized density matriy:

pl=p>0 Trp=1. (2.2)

It can be expanded in the so-called diagonal coherent state representation [8]:

R d?z
o= / —¢(2)|z)(z|
T

(2.3)
2
T
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While hermiticity of 6 corresponds to reality of the weight functigr(z), the latter is in
general a singular mathematical quantity, namely a distribution of a well-defined class.

The conventional designation ¢@f as being classical or nonclassical is based on the
properties ofg(z). Namely, p is said to be classical ip(z) is everywhere non-negative
and not more singular than a delta function [1]:

o classicale ¢(z) >0 no worse than delta function

p nonclassicaks ¢ (z) % 0. (2.4)

It is clear that the conditions to be classical involve an infinite nhumber of independent
inequalities, sincep(z) > 0 has to be obeyed at each poinin the complex plane. This
is true despite the fact that the conditibn> 0 means that the ‘values’ @f(z) at different
points z are not quite ‘independent’. One realizes this by recalling that every classical
probability distribution over the complex plane is certainly a possible choicé or, with
the corresponding being classical. Whem is classical in the above sense, quantum
expectation values acquire a classical statistical interpretation (see below).

The above familiar definition of classical states deals directly Withnd ¢(z). Now
we develop an equivalent definition based on operators and their expectation values. As
is well known, the representation (2.3) fpris closely allied to the normal ordering rule
for passing from classical c-number dynamical variables to quantum operators. Within
guantum mechanics we know that an opera‘fo'rs completely and uniquely determined
by its diagonal coherent-state matrix elements (expectation valugs):). Moreover, the
hermiticity of £ and reality of(z| F|z) are precisely equivalent. Any (real) classical function
f(z*, z) determines uniquely, by the normal ordering rule of placifglways to the left
of a after substitutingz — a andz* — af, a corresponding (Hermitian) operaték, as
follows.

Normal ordering rule

f(z* 2) > Fy
(zlFylz) = f(z%,2) (2.5)
f reals Fy Hermitian

The connection with the representation (2.3) fois given by

s d?z .
Tr(pFy) =/7¢(Z)f(z ,2). (2.6)

It is an important property of the normal ordering rule that, while it translates classical reality
to quantum hermiticityit does not preserve positive semidefinitenédere explicitly, while

by equation (2.5)Fy > 0 implies f(z*,z) > 0, the converse is not trueHere are some
simple examples of non-negative classical rgééd*, z) leading to indefinite Hermitiary:

f@ =@ +2?— Fy=@"+a?-1
f@* ) =@ +2)* — Fy=(@a"+a)?-3?-6

2.7)
Sk > C}'l % A e
f@@h ) =¢e%"¢ E e " — Fy = E Culn)(nl.
n=0 """ n=0

In the last example, the real constagtscan certainly be chosen so that some of them are
negative while maintaining (z*, z) > 0; this results inFyy being indefinite.

We thus see that when the normal ordering rule is used, efgry= 0 arises from
a unique f(z*,z) > 0, but some (real)f(z*,z) > 0 lead to (Hermitian) indefinite”y.
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So in a given quantum statg, the operatorFy corresponding to a non-negative real
classicalf (z*, z) could well have a negative expectation valliethis never happens, then

o is classical That is, as we see upon combining equations (2.4) and (2.6): if for every
f(z*, z) > 0 the correspondind’y has a non-negative expectation value even thofigh
may be indefinite, thep is classical. Converselyj is nonclassical if there is at least one
f(z*, z) = 0 which leads to an indefinitéy whose expectation value is negative.

We can also convey the content of this dual-operator way of defining classical states
as follows: while the normal ordering rule allows for the appearance of ‘negativity’ in an
operatorFy even when none is present in the corresponding clasgical z), in a classical
state such negativity never shows up in expectation values.

It is well to re-emphasize at this point that the above distinction between ‘classical’
and ‘nonclassical’ states is based on a convention within the quantum theory of radiation.
The physical content of the convention is that in a ‘classical statejuelhtum expectation
valuesof normal ordered operators can be equally well regarded as arising from a truly
classical statistical ensemble with a corresponding bonafide probability distribution at the
amplitude level.

Since it is positivity that may be lost when we use the normal ordering rule to pass
from classical to quantum variables, it is of interest to ask what happens when other rules
of correspondence are used. Two familiar alternative rules are antinormal ordértog (
the left anda' to the right) [9] and Weyl orderingg(and p treated symmetrically) [10, 11];
in fact in an algebraic sense we may say that the latter stands midway between the other
two. With antinormal ordering it turns out that classical positivity certainly implies quantum
positivity but not conversely. For example, by this rule we find:

f@h2) =G 4+2)2—1— Fy= (@' +a)? (2.8)
With the Weyl rule, positivity can fail in both directions, as shown by these examples:

f(q, p) = 8(q)8(p) —> Fw = parity operator
g 2(,, 2 1 2 2
Fyw =01 — f(g,p) = -\ +p 5 exp(—qg® — p°).

While these remarks illuminate in terms of operator properties the relations among the
three ordering rules, the classification of stafeinto classical and nonclassical ones is
based most simply on the normal ordering rule. It is clear that all these considerations
extend easily to any number of modes of radiation.

All the familiar criteria of nonclassicality can be cast in our operator-based approach in
a rather straightforward way. We consider here two examples, namely, sub-Poissonian
statistics and quadrature squeezing which involve fluctuations in photon number and
guadrature components respectively. At a first glance, they seem to involve more than
one operator in a nonlinear way and thus are not directly analysable by the operator-based
dual method of defining nonclassicality. However, it turns out that we can incorporate these
notions in our formalism quite easily. A single-mode state exhibits sub-Poissonian photon
statistics if the Mandel parameter

(@?a% — (a'a)®
(ata)
(which is the same a&i?a?) — (afa)?, except for a positive denominator) is negative for

that state. In order to connect this notion with our approach, consider the non-negative
classical function

fo(z. 2% = (Iz[* = ¢*)? (2.11)

2.9)

0= (2.10)
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wherec is a real parameter. The operator corresponding to this function, by the normal
ordering rule, is

ﬁQ(aT, a) = a?a% — 2atac® + ¢* (2.12)

which is indefinite for all values of. Therefore, if the expectation value of this operator in

a given state is negative for some valuecpthe state is nonclassical. To further strengthen
the potential of this function to explore nonclassicality, we minimize its expectation value
with respect tac. The value ofc for which the minimum occurs is state dependent and can
be written in a universal form:

¢ (for which (Fy(a', @)) is minimum)= (a'a) (2.13)

(the expectation here is calculated for the state of interest). If we now &ethis value
the expectation value of the operator in the above analysis becomes identical to Mandel's
Q parameter for sub-Poissonian statistics.

The analysis for quadrature squeezing is very similar; the classical positive function is
now

fso(z, 2°) = (2°€? + z&7% — ¢)? (2.14)
with the corresponding indefinite operator being
Fsy(at, a) = (@€ + ae7%)? — 2(a'¥ + ae™)c + 2 — 1. (2.15)

The negativity of the expectation value for this operator becomes identical to the squeezing
of the quadrature componel%(&Té"’ + ae’'¢) when we set = (atd? + ae '¢) (with the
expectation calculated for the state of interest). The appearangeiraficates the phase
sensitive nature of quadrature squeezing as opposed to that of sub-Poissonian statistics. By
choosing different values af we can analyse different quadrature components. Similar
analysis can also be carried out for other criteria of nonclassicality such as higher-order
squeezing [12] and the one based on matrices constructed out of factorial moments of the
photon number distribution [13].

3. Levels of classicality

3.1. The single-mode case

We begin again with the single-mode situation and hereafter deal exclusively with the normal
ordering prescription. (Therefore the subscripbn Fy will be omitted). Suppose we limit
ourselves to classical functions(z*, z) which are real, non-negative and phase invariant,
that is, invariant under — €%z. An independent and complete set of these can be taken
to be

fulz*, z) =€ ¥z nl n=012,... 3.1)
since they map conveniently to the number state projection operators:
fu(@*, 2) — F™ =|n)(n| n=012.... (3.2)

A general real linear combinatiofi(z*,z) = >, C, fu(z*, z), even if non-negative, may
lead to an indefinite”, as seen at equation (2.7).
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If we are interested only in the expectation values of such variables, we are concerned
only with the probabilitiesp(n) for finding various numbers of photons; for this purpose
an angular average @f(z) is all that is required:

p(n) = (n|pln) = Tr(p|n)(n|)

dZZ —z*z_%n_n
=/—¢(z)e 2" n!
g

= /OO dI P(1)e”"1"/n! (3:3)
0

2
P(1)=i/ do ¢ (1%/%€").
27T 0

Now while ¢ (z) > 0 certainly impliesP (/) > 0, the converse is not true. Thus one is led
to a three-fold classification of quantum stagefl4]:

p classicak= ¢(z) > 0 henceP (/) > 0
0 weakly nonclassica&— P(I) > 0 butg(z) 20 (3.4)
o strongly nonclassicad— P(I) 20 S0 necessarily(z) # 0.

The previous definition (2.4) of nonclassigabased onp(z) alone is now refined to yield
two subsets of states, the weakly nonclassical and the strongly nonclassical. The former
states do have the following property:

p weakly nonclassicat=> Tr(pF) > 0if f(z*.2) = Y Cufu(z".2) > 0. (3.5)
n=0

However, in addition, there would definitely be some phase noninvayiéit, z) > 0 for

which F is indefinite and TioF) < 0. It is just that this extent of nonclassicality fhis

not revealed by the expectation values of phase invariant variables, or at the level of the
probabilitiesp(n)7.

We may stress that this three-fold classification is again based on a physically motivated
convention within quantum theory. In gener@l(/) could be regarded as a candidate for
the probability distribution for the intensity variable, with its moments (along with the
exponential factor &) yielding the true probabilitieg(n). If a quantum statg is weakly
nonclassical, it means that as far as the photon number probabjlitiesare concerned,

a truly classical statistical ensemble at the intensity level is available to reproduce these
p(n) but this is not true at the deeper amplitude levelg Ifs strongly nonclassical, then
even for the limited information contained in th&n), a classical ensemble description is
impossible sinceP(7) is not non-negative. We may also clarify that this discussion deals
exclusively with the search for possible classical statistical ensemble descriptions at various
levels and not at all with the semiclassical approach to quantum theory in the limit that
Planck’s constant ‘tends to zero'.

It is clear that the classification (3.4) {8(1) or phase invariant. That ig retains its
classical, weakly nonclassical or strongly nonclassical character under the transformation
¢(2) — ¢'(2) = p(z€%).

As examples of interesting inequalities obeyedpifis either classical or weakly
nonclassical, we may quote the following involving the factorial moments of the photon

1 See Klauder and Sudarshan [8].
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number probabilitieg (n):

Y = Tr(pa™a™)
d2
=/—Z¢(z)(z*z>'”
T
:/0 dr p(DHI™ (3.6)

:Zp(n)n!/(n—m)!)O m=20,12,...

n=m

o classical or weakly nonclassicat= P(I) > 0= v,,¥u < Viman < /V2nVn-

Violation of any one of these inequalities impligsis strongly nonclassical.

The inequalities quoted in equation (3.6) above clearly involve an infinite subset of the
photon number probabilities(n). However one can easily construct far simpler inequalities
involving a small number of the(n), violation of any of which also implies that is
strongly nonclassical. For example, from equations (3.1) and (3.2), for any non-negative
integerng and any reak, b we have the correspondence

(Z )l‘lo

*’ — —ZZ b
f@* ) =¥ " "0 (a+bzz")? — 37)

F = a®|no) (no| + 2(no + Dablno + 1) (no + 1| + (no + ) (no + 2b?|no + 2) {no + 2|.
Here f(z*, z) is non-negative while is indefinite ifab < 0. We then have the result:

o classical or weakly nonclassicat P(I) > 0=
a®p(no) + 2(no + Dabp(ng + 1) + (no + 1) (no + b*p(no + 2)

oo

1
== dI P(De ' I"(a + bI)?> >0 (3.8)
nO! 0

n0+2
no+1

i.e. p(no+ 1)? < ( ) p(no)p(no + 2).
So again, violation of any of these ‘local’ inequalities prin) implies thatp is strongly
nonclassical.

A physically illuminating example of the distinction between classical and weakly
nonclassicalp, and passage from one to the other, is provided by the case of the Kerr
medium. The argument is intricate and rests on two well known results. The first is
Hudson'’s theorem [15]: if a (pure-state) wavefunctigs(g) has a non-negative Wigner
function Wy(q, p), thenyp(g) is Gaussian and conversely; in that caBg(q, p) is also
Gaussian. The second result is the general connection betivegrand W (¢, p) for any

0.

d2 72IL -7/ _ 1 H
Wi, p)—2/ g 6 2= atip. (3.9)

This means that for classicalwith ¢ (z) > 0, W(q, p) > 0 as well. Now imagine a single
mode radiation field in an initial coherent stétg) with ¢o(z) = 78@ (z —z0), incident upon

a Kerr medium [16]. This initial state is pure, classical and has a Gaussian wavefunction
Yo(g). The Kerr-medium Hamiltonian is of the form

Hyerr = @d'a + p(a'a)®. (3.10)
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Clearly the number statés) are eigenstates of this Hamiltonian. Therefore the Poissonian
photon number distribution

p(n) = e Ig/n! Io = 2370 (3.11)

of the input state|zo) is preserved under passage through the Kerr medium. Likewise
the function P(I) = 8(I — Ip) is left unaltered. Therefore the output state), which

of course is pure, is either classical or weakly nonclassical. However, the fofxHf
shows that the output wavefunction is non-Gaussian. Therefore by Hudson’s theorem the
correspondind¥ (¢, p) must become negative somewhere. Therefore by equation (3.9) the
output¢(z) cannot be non-negative. Thus passage through the Kerr medium converts an
incident coherent state, which is classical, into a final state which is weakly nonclassical.

3.2. The two-mode case

Now we sketch the extension of these ideas to the two-mode case. Here the operator
commutation relations, number and coherent states and the diagonal representation for
0, are straightforward generalizations of the relations in the single-mode case, and of
equation (2.3):

p= / du (2)¢ (2)|2)(zl
du (z) = &? 23 dzp /72

The symbolz denotes a pair of complex numbets, z2).

It is convenient at this point to go when necessary beyond purely real classical functions
f(z) in applying the normal ordering rule to obtain corresponding operators. From the
general number states matrix elementspofve read off some operator correspondences
generalizing equations (3.1) and (3.2):

(3.12)

(n3, nalplny, na) = Tr(plny, na)(ng, nal)
kN1 _knp N3 _HN4

_ d e,;’t 21 %o 2173 —
/ " (§)¢(§) «/n1!n2!n3!n4! (313)

—> |n1, na)(ns, nal.

*, *,
te 2125 02002yt

e*;é
I’l1!fl2!fl3!ﬂ4!

For one mode the phase transformations form the groyf). For two modes this
generalizes to the group'(2) of (passive) transformations mixing the two orthonormal
single photon modes. A general element (4,;) € U(2) can be obtained as a phase
factor & € U(1) times an elemeni € SU(2), u = €%a. At the operator level the unitary
U(2) action on the two-mode Hilbert space is generated by the well known Schwinger
construction of angular momentum,

J=3d'od (3.14)

wheres are the Pauli matrices anl= (41, )7 are the two annihilation operators, and
the total number operat@jé. Namely, the unitary operatéf(a) on the Hilbert space, for
a € SU(2), is obtained as a suitable exponential of ttis; while theU (1) generator is the
total number operator. Actuallyf(«) for u € U(2) can also be easily defined by its action
on the coherent states [17],

U)|z) = uz). (3.15)
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For our later purposes it is also useful to have the effect of these unitary opera@,r@*on
and monomials in them:
2

UWaUw ™ =Y uyd

s=1

U)aitd ()™t Zusr al

11+mATJ —m ~tj+m’ &IJ m'

a’™"a . . 4
U) 22 Uw) ™t =e 23 DY) (@) =2 (3.16)
«/(J+ m)!(j —m)! ; VG +m)HI( —m)!
A:{er&éfm L ez ) 0 &:{+m &é m’
Uu) —— . Uu) =€ > D, (a) .
V3 +m)!(J —m)! mz VG Hm)HI(j —m")!
j=0131
m, m _],]—1,...,—j.

We have chosen the exponentsad anda'’s and numerical factors in such a way that
the results can be expressed via #1&(2) irreducible representation matrices, namely the
D-functions of quantum angular-momentum theory [18]. As is also well known, the states
with a fixed total number of photons, say,2ransform undet/(x) via the matriceD (a).

To motivate the existence of several layers of classicality, we now generalize the single
mode U (1)-invariant real factorial momentg, of equation (3.6) to two-mode quantities
which conserve total photon number and also transform in a closed and covariant manner
underSU (2). For this purpose, keeping in mind equations (3.16), it is convenient to start
with the (in general complex) classical monomials

mlmg(z Z) Jm1m221(]+]7llz;] M1Z]].+mzzé "
Njmmz =[G +mol (G = m)I( +m)!(j —m2)] ™2 (3.17)
j=0,1 L.
miy,mpy=j,j—1 ..., —].

The total power of is equal to that of, hence these ai€(1)-invariant. The corresponding
operators and thei§U (2) transformation laws are, using equation (3.16):

fmlmz(z zZ) — lemz = N/"11m2&11+’711&é] my A{-‘rmz&é ma
-1 ) ) 3.18
aeSUQ :U@F],Ua =Y DY @D, @, 318
my,mp

For a given two-mode stafe we now generalize the factorial momemsof equation (3.6)
to the following three-index quantities:

J/n(ljzzﬂl = Tr(pFr{qmz)
— ij1m2 Tr(paIJerlA]LJ —my A:{erzAj "12) (319)

Their SU (2) transformation law is clearly
P =U)pU@) " :
() ) -1\ 1) —1yx. ()
ymzjml - Z Dm ml(a )Dm mz(a ) Vm’m’l (320)

’ !
my,my

ie. y’(j) — D(j)(a)y(j)D(j)(a)T_
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In the last line for each fixedg the generalized moment,ia,lm2 have been regarded as a
(Hermitian) matrix of dimensiori2;j + 1).

On account of the fact that the total photon number is conserved in the definition of
these moments, calculation Mmz does not require complete knowledgedak) but only
of a partly angle-averaged quantiB(/1, I, 6):

=) =) 21 do )
A ijlmz/ dIl/ dlzf EP(IL I, 0)(I112)’
0 0 0

% ([l/]2)1/2(m2+m1)ei(m1—m2)9 (3.21)

Py, I,0) = / %Qg(ll/zelel 11/2e|(61+9))
0

It is clear that these momentzélm2 involve more than just the photon humber probabilities
p(n1, np) which are just the ‘diagonal’ case of the general matrix element in equation (3.13):

p(n1, np) = (n1, nolplny, no)

o0 o0
_ —I1—1z yn1 gn2 15,1
/0 d11/O diz P(I1, )€ 117 15" [nalna! (3.22)

2 do
P(Iy, I2) =/ 2 P, I2, 0).
0 JT

This is the two-mode version of equation (3.3). The subset of ‘diagonal’ monjréﬁtare
calculable in terms op(ny, n) or P(Iy, I):

o0 o0 . .
Y4 = /0 di /0 Al P(Ly, IV 17" )G 4 ) — m)!

= Z p(ny, no)nalnot/(ny — j —m)l(nz — j +m)!(j +m)(j —m)!. (3.23)

ni,ng

However, under a generdlU (2) mixing of the modes, the expressiops)), p(ni, n2),

P (I, I) do not transform in any neat way among themselves and one is obliged to enlarge
the set to include the more gene 1,,12 and P(I4, I, 0). (In particular, for these, the
probabilities p(n1, ny) are inadequate.) When this is done we see the need to deal with
both the quantitie® (11, I», 0), P(I1, I>) derived from¢ (z) by a single or a double angular
average. One can therefore distinguish four levels of classicality for two-mode states:

p classicals ¢(z) >0 (henceP (I, Iz, 0), P(I1, ) = 0)
0 weakly nonclassical < P(1I1, I, 0) > (henceP (I, I) > 0)

but¢(z) 20 (3.24)
0 weakly nonclassicalI < P(I1,1;) >0 butP(ly, I,,60) 20

(henceg(z) 2 0)
o strongly nonclassicaks P(Iy, I2) 20 (hencep (z), P11, I2,0) # 0).

These definitions can be cast in dual operator forms. For example, for weakly nonclassical-
| states, we can say that for any classical real non-negative ové(a)l phase invariant

f(zt 2) the correspondmg operatafr has a non-negative expectation value, while this fails
for some £ (z', z) outside this class. In the weakly nonclassical-Il case, we have to further
limit f(z', z) to be real non-negative and invariant under independgiy x U (1) phase
transformations in the two modes, to be sure that the expectation valuésafon-negative.
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It should be clear that the underlying motivations for these definitions are similar in
spirit to the single mode case. As before, the main idea is to see to what extent quantum
expectation values can be mimicked by truly classical statistical ensembles. In this sense,
we see clearly that in the weakly nonclassical-I case there are more observables whose
expectation values are reproducible on a classical statistical basis, than in the weakly
nonclassical-1l case. The general idea then is to seek, for a given quantum state, all those
observables whose expectation values are reproducible on a classical basis, and separate
them from those for which this is not possible.

At this point we can see that these levels of classicality possess different covariance
groups. Since under a gener@dk2) transformation/(u),u € U(2), the function¢(z)
undergoes a point transformatiop(z) — ¢'(z) = ¢(u’z), we see that the property of
being classical is preserved by &l(2) transformations. On the other hand, a genéré?)
transformation can cause transitions among the other three levels. The point transformation
property is obtained fo (I3, I, 0) and P (I, I,) only under the diagonal/ (1) x U(1)
subgroup ot (2); in fact P (11, I,) is invariant undetU (1) x U (1), while P (13, I, 6) suffers
a shift in the angle argumefit Thus one can see that each of the three properties of being
weakly nonclassical-I, weakly nonclassical-1l or strongly nonclassical is &rily) x U (1)
invariant.

As the number of modes increases further, clearly the hierarchy of levels of classicality
also increases. '

Generalizing inequalities of the form (3.6) for the diagonal quantjtgs for 5 classical
or weakly nonclassical-l or weakly nonclassical-Il, is quite straightforward, since then we
deal with the two modes separately. The more interesting, and quite nontrivial, problem
is to look for matrix generalizations of equation (3.6), bringing in the entire matrices
y¥ = (y,fjfmz), and looking for inequalities valid for states of the classical or weakly
nonclassical-I types. (Of course for any quantum sgfavee have the obvious property that
y@, for eachj, is Hermitian positive semidefinite. This is the two-mode generalization
of ¥, > 0 in the one-mode case.) However, this is expected to involve use of the Racah-
Wigner calculus for coupling of tensor operators, familiar from quantum angular-momentum
theory, inequalities for reduced matrix elements, etc [19].

In the next section we undertake a study of the particular gasel which involves
at most quartic expressions #is and af’s. This is just what is involved in giving a
complete account of the two-mode generalization of the Mari@arameter familiar in
the single-mode case.

4. Generalized photon-number fluctuation matrix for two-mode fields

For the one-mode case, with the single photon number opekateraia, we have some
obvious inequalities valid in all quantum states and others valid in weakly nonclassical and
classical states as defined in equation (3.4):

any state
(N)=Tr(pN) =1 >0 (4.18)
¢ N%) =Trpat%a®) =y, >0 (4.1b)
(N =Tr(pataata) = o+ >0 (4.1c)
(ANY? = (N?) = (N> = (N —(ND)A) =2+ —vE > 0. (4.10)

Weakly nonclassical or classical state
(N?:) —(N)2=(AN)? = (N) =y — y2 > 0. (4.1¢)
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(Here the dots : : denote normal ordering.) The Mandgbarameter is defined as [7]

2 N 2
0= (AN) ] (N) _r2—n (4.2)
(N) "
and it has the property of being non-negative in classical and weakly nonclassical states.
Conversely if Q is negative, the state is definitely strongly nonclassical. The two cases
0 > 0 andQ < 0 correspond respectively to super- and sub-Poissonian photon number
distributions.
The inequalities (4.1) are not all independent, as some imply others. We now give the
generalization of these in matrix form, to two-mode states.
We have to deal with four independent number-like opera&blsu =0,1, 2,3 which
we define thus:

A

NM = QTUMQ = (aﬂ)rs&:&s

(4.3)

ala, = (0,0, N,
(Hereop ando; are the unit and the Pauli matrices and the sunu.ogoes from 0 to 3.)
The expectation values o@’u in a general statg are written asz,,:

(N,) =Tr(pN,) = f du ) (2)z'0,z = ny,

(4.4)
(&I&S) = Tr(ia&:«r&s) = %(au)rsnpu
Thus n,, and the matrixy¥/? = (y,ﬁ{,fg) are essentially the same. Since thex2

matrix ((&I&S)) is always Hermitian positive semidefinite, we see that the generalization
of inequality (4.%) to the two-mode case is
no — |n| = 0. (4.5)

(All components ofn,, are real.) It may be helpful to remark that the matyi¥/? is
analogous to the coherency matrix, and the quantitigsto the Stokes parameters, in
polarization optics [20].

We now consider quadratic expressions]\?p which are up to quartic i} and a,
combined. To handle their normal ordering compactly, we first define certain quadratic
expressions i@, and their Hermitian conjugates:

Aj=ia' op05a Al = —id'g;000" j=123
. (4.6)

A

. i A PR
Gl = =5 (002 A; 4] = S(020)) A}

Under the action of the unitary operatéféa) representing U (2), bothAj andA; transform
as real three-dimensional Cartesian vectors. We can now easily express the result of writing
the productN, N, as a leading normally ordered quartic term plus a remainder:
]\A]MNU = ]\A/HNV . +(£MV)~ + iéoﬂv)h)f\,\/)\
R AR
. Nqu = l‘lekAjAk - - (47)
t;wjk = %(5uv8jk - (S,uj(svk - 8Uj8;tk - |8M060vjk - |8v060ujk)
Lvn = 8,0030 + 8,00un + 8,08, — 26,,08,0010-
Here €, ., is the four-index Levi—Civita symbol witlag123 = 1. So the anticommutators
and commutators among,, and N, are:

%{N;u NV} = [;wjkA;AAk + EMUAN)» (48&)
[Ny, N.] = 2i€g N (4.80)
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(These latter are just th€ (2) Lie algebra relations.) To accompany, in a general state
we denote the expectation values@ffik by gji:

(AlAy) = Tr(pAT A = g (4.9)

Clearly, (i) is basically the matriy® = (1 ) and is always a & 3 Hermitian positive
semidefinite matrix. This statement is the generalization of inequalityp4We can also
generalize the inequalities (4)land (4.X) by saying that for any quantum state the two

matrices with elements given by

(%{N/u ]\A]v}> = t/wjkCIjk + euvk”k (4103-)
A(]\A];,u Nu) = %({NM - (Nu)» ]\A]v - (Nv>}>
= t;wjkqjk + E,uv)»n)» — nyuhy (41a))

are both 4x 4 real symmetric positive semidefinite. As in the one-mode case the
inequality obeyed by(A(N,L, N,)) implies the one obeyed by the anticommutator matrix
(3 Ny N}

Now we search for matrix inequalities which are valid in two-mode classical or weakly
nonclassical-l states, but not necessarily in weakly nonclassical-Il or strongly nonclassical
states. The key ingredient is the formula

(2NN D) — (V) /du @¢ () ouz —ny) oz —ny)

do
/ / dlldIZ/ 77_[7)(117 I, 9)(£TU/L£_nM)(£TU\)£_nV) (411)

1/?
£ = Izl/zeie .

We can draw the following conclusion:
classical or weakly nonclassical-I state

(3N Ny} ) = (N (NL) = (AN, Ny) = L (N3)) > 0. (4.12)

This is the intrinsic two-mode expression of super-Poissonian statistics and its violation
(possible only in weakly nonclassical-ll or strongly nonclassical states) is an intrinsic
signature of two-mode sub-Poissonian photon statistics. What makes this criterion nontrivial
is the fact that for any,, obeying equation (4.5) thex44 matrix (/,,,;n,) is real symmetric
positive semidefinite.

It is interesting to pin down the way in which this matrix inequality (4.12) can go
beyond a single-mode condition [21]. The most general normalized linear combination of
the two mode-operatoi. is determined by a complex two-component unit vector

ola = (4.13)
[a(e), a(@)] = 1.

For every such choice of a single mode, the inequality (4.12) does imply the single-mode
inequality (4.k). We can see this quite simply as follows. Givenwe define the real
four-component quantitg, (o) by

Eu(a) 05 O—;LO(

(4.14)
Eo(e) = ()| = 3.
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Then, using the completeness®f expressed by

(O';L)rs (U;L)tu = Zaru&vt (415)
we have the consequences:

£,@N, =a@'a@ =N

(4.16)
L@y (a) = &.(a).
Indeed we easily verify that (leaving asi€g = 0 identically)
Lii€u&y = & = eithergo = [§] = 3
& & =3alo.0
somea obeyinga'a = 1
oré=1 &=0 (4.17)

Saturating the left-hand side of (4.12) with the latter possibiity= §,.0, leads to the super-
Poissonian condition for the total photon number distribution. Saturating itayiia)&, (o)
we obtain as a consequence,

(AN@)?—(N(@)) >0  anya. (4.18)

In this way the two-mode matrix ‘super-Poissonian’ condition (4.12) implies the scalar
single-mode super-Poissonian condition é3.fbr every choice for normalized single mode
with annihilation operatofi(«), as well as for the total photon number.

However, it is easy to see thtite information contained in the matrix inequality (4.12)
is not exhausted by the collection of single-mode inequalities (4.18) for all possible choices
of (normalized)x. Denoting the real symmetric matrix appearing on the left-hand side of
(4.12) by (A,),

A/w = A(]\A]/u ]\Ajv) - Zuvk<1\7)»> (419)
it is clear that

EuAE 20 for all &, obeying&, = [§| = 3
% (Au) = 0. (4.20)

Indeed, the left-hand side here reads in detail:
£ AnE = 3Ac0+ Aoj& + Ei&Ajk (4.21)

and the non-negativity of this expression for all 3-vectgrsvith |§| = % cannot exclude
the possibility of the 3x 3 matrix (A;) having some negative eigenvalues. Part of
the information contained in the matrix condition (4.12) is thus irreducibly two-mode in
character, a sample of this being,

(Aw) 20= (A = 0. (4.22)

Admittedly to a limited extent, this situation is analogous to some well known properties
of Wigner distributions. Thus the marginal distributions in a single variable obtained by
integratingW (¢, p) with respect top or with respect tq; (or any real linear combination
of ¢ and p) are always non-negative probability distributions, even thoUgly, p) is in
general indefinite. So also here, it can well happen that for a certain stateApptind
&, (@) A6 (o) are non-negative for alt, yet (A,,) is indefinite.
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There exists in the literature a well known inequality for two-mode fields, which when
violated is a sign of nonclassicality [22]. It reads:

(n1(fiy — 1) + na(ip — 1) — 2a102) > 0
.t R (4.23)
np=aa na = asaz

and evidently involves only diagonal elements of the matdx,). After rearranging the
operators in normal ordered form one can see that

(A1(Ay — 1) + Ag(ia — 1) — 2h1i,) = (G242 + 4243 — 2alajara,)

= %(‘111 +g22 — q33)

= A3z + ng nz = (&I&l — &;&2) (424)
By our analysis, in any classical or weakly nonclassical-| state the matyix) is positive
semidefinite, so in particulafzz and even more so the expressidg; + n% are both non-
negative. Thus the inequality (4.23) is certainly a necessary condition for classical and
weakly nonclassical-l states. Conversely, if (4.23) is violated &gt n3 is negative, then
certainly Azz is negative as well and the state is either weakly nonclassical-Il or strongly
nonclassical. However, this condition is unnecessarily strong since it ask&sfaio be
less than—n%; as we have shown, even the weaker condidag < 0 is sufficient to imply
that the state is weakly nonclassical-Il or strongly nonclassical. Vice versa, our necessary
condition A3z > 0O for a classical state or weakly nonclassical-l state is stronger than the
condition (4.23). In both directions, then, our conditions are sharper than the ones existing
in the literature.

We conclude this section by presenting a few examples bringing out the content of the
matrix condition (4.12), in particular the possibility of its containing more information than
all single-mode projections of it.

(a) Pair-coherent states These are simultaneous eigenstateg@f and &I&l - &;&2
[23]:

&1&2|§v q) = ;';v q) é- G/C

Afa At (4.25)
(ara1 — a,a2)1¢, q) = ql¢, q) g=0+£1+£2....
For g > 0 these states are given by
Cn
¢, q) qZW|n+q,n> (4.26)

where N, is a normalization constant. It is known that in these states the second mode
already shows sub-Poissonian statigticBhus if we write the matrix (4.19) for these states
as(A,,(¢, ¢)), then even without having to nontrivially mix the modes we find:

a=01" & =3¢"0=(300-2):
Eu(@) A (C, @) (@) < 0.

The matrixA(¢, q) is indefinite and the pair coherent states are therefore neither classical
nor even weakly nonclassical-I. Consistent with this, a direct numerical study of the least
eigenvaluel(A(¢, q)) of (A,.(¢, q)) for sample values of and g, does show it to be
negative.

(4.27)

1 See Agarwal [2].
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(b) Two-mode squeezed vacuurit has been shown elsewhere [25] that a two-mode
squeezing transformation is characterized by two independent intrinsic squeeze parameters
a andb obeyinga > b > 0. A representative of such a transformation is

U (. b) = exp|:(a_b)(&12 _ &1)] eXp|:(a )

4

The casea = b essentially corresponds to the second mode alone being squeezed. For
generala # b we have genuine two-mode squeezing; while the (Caves—Schumaker) limit
b = 0 involves maximal entanglement of the two modes. We restrict our analysis to this
limit in the sequel. Then the two-mode squeezed vacuum is characterized by the single
parametewu and is

(@ — az)} . (4.28)

U (a, 0)|0, 0) = exp[%(&}z —a2+af? - &2)] 10,0). (4.29)
The matrix(A,,(a)) can be explicity computed and happens to be diagonal:
(A (@) = diag(3(—3 + 7 cosh2a)) sinh(a)?, 2 cosl2a) sinh(a)?,

—2sinha)?, 2 cosh2a) sinh(a)?). (4.30)

We see that for alk > 0 this is indefinite, since the third eigenvaldes(a) is strictly
negative. This is displayed in figure&l( for a in the range O< a < 1. Thus for alla > 0

the state (4.29) is definitely neither classical nor weakly nonclassical-l. On the other hand
the leading diagonal element (eigenvalug)(a) dominates the others in the sense that for
all choices of single mode the ‘expectation value’Af) is non-negative:

Eu(@Au(@)bi(@) 20 all a. (4.31)

Thus the squeezed vacuum (4.29) displays nonclassicality via sub-Poissonian statistics in an
intrinsic or irreducible two-mode sense which never shows up at the one-mode level for any
choice of that mode. This is to be contrasted to the case of pair-coherent states discussed
previously. At the same time the state (4.29) is also quadrature squeezed dorall.
Thus both these nonclassical features are present simultaneously.

(c) Two-mode squeezed thermal statdhis is defined as follows (we again limit
ourselves to the cage= 0):

pla, ) =U"(a, 0)po(BU (a,0)
po(B) = (1 —e")? expl-B(ajan + abar)].
At zero temperaturgg — oo this goes over to the previous example (b). Once again the
matrix (A, (a, 8)) can be computed analytically and it turns out to be diagonal:
(Auv(a, ) = (=1 +€)?
$(13— 14€ + 13€* + 20(1 — €%) cosh(2a) + 7(1 + €%)? cost4a))
3(1— €24+ 2(1— %) cosh2a) + (1 + €)2 cosh(4a))
1+ e + (1 - €#) cosh2a)
3((1—€%)2+2(1— €?#) cosh2a) + (1 + %)% coshi4a))

(4.32)

x Diag

(4.33)

Now the third elemen#i,,(a, ) can become negative for low enough temperafure g1

or high enough squeeze parameter The variation of the least eigenvald@ (a, 8)) of
A(a, B) with respect toa in the range 0< a < 1, for various choices 0B, is shown

in figures 1p)—(d). One can see that if the temperature is not too high, for sufficiently
largea the elementd,,(a, B) becomes negative, indicating that the state has then become
weakly nonclassical-1l or strongly nonclassical. (In comparison we recall that for quadrature
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Figure 1. Plots of least eigenvalue of the matii,,) as a function of squeezing parameter
(a) The least eigenvalue afA,,,) for squeezed vacuum wheredn-{(d) display the same for
squeezed thermal states with inverse tempergitaging the values 4.0, 2.0 and 1.0 respectively.
In (b)—(d) the arrows show the setting in of quadrature squeezing.

squeezing to set in the parametemust obey the inequality > In coth(g) [24].) On the
other hand as in example (b), the leading elem&gia, ) again dominates the others in
the sense that

E/L(Q)A/w(aa B)év(a) = 0 all . (434)

So once again, wheHAys(a, B) < 0, the sub-Poissonian statistics is irreducibly two-mode
in character. In figures bj—(d) we have also indicated the value of the squeeze parameter
a at which quadrature squeezing sets in. It is interesting to see that, for the states described
here, at each temperature, the irreducible two-mode sub-Poissonian statistics occurs before
squeezing. Therefore (limiting ourselves to low-order moments(gf) there exists a range
of squeeze parameter where the only visible nonclassicality is through such sub-Poissonian
statistics.

The more general squeezed thermal state

p(B,a,b) =U(a, b)po(BU (a, b)™* (4.35)



582 Arvind et al

has qualitatively similar properties. Detailed numerical studies presented elsewhere [21]
have shown that these states also do not show sub-Poissonian statistics at the one-mode
level. On the other hand, a direct search for the least eigenvalug ofa, b, 8)) reveals
that, for suitable values @8, a, b, this is negative.

We thus have several instructive examples of the situation indicated by equation (4.20).

5. Concluding remarks

We have presented a dual operator and expectation value based approach to the problem
of distinguishing classical from nonclassical states of quantized radiation and thus brought
out the significance of this classification in a new physically interesting manner. As the
number of independent modes increases, this approach leads to finer and yet finer levels of
nonclassical behaviour, in a steady progression. This has been followed up by a complete
analysis of photon number fluctuations for two-mode fields and a comprehensive concept
of sub-Poissonian statistics for such fields going beyond what can be handled by techniques
developed at the one-mode level.

In a previous paper we have set up the formalism needed to examine the possibility
of two-mode fields showing sub-Poissonian statistics at the one-mode level in an invariant
manner, by following the variation of the Mandé-parameter as one continuously varies
the combination of the two independent modes into a single mode. One can see through
the work of the present paper that that preparatory analysis is a necessary prerequisite to be
able to pinpoint the aspects of sub-Poissonian statistics which are irreducibly two-mode in
character. Examples (b) and (c) at the end of section 4 bring out this aspect vividly.

The inequality (4.23) has been strengthened by our approach to a sharper criterion to
distinguish various situations:

classical or weakly nonclassical= A3z > 0 51

As3 < 0 = weakly nonclassical-ll or strongly nonclassical ®-1)
From equation (4.19) and (4.24) we see thAgt has the following neat expression:

Agz = (Af1)® — (A1) + (Af2)? — (f2) — 2A (A1, fiz)

= ((A1 — 12)?) = ({A1 — 12))? — (A1 + fi2). (5.2)

It is thus expressible solely in terms of expectations and fluctuations of the original
(unmixed) mode number operatofig, 71, and their functions. One can now see easily,
again from equation (4.19), that the statements (5.1) are part of a wider set of statements
involving only expectations of functions af, 7,:

Ago = (ANg)? — (No)
Aoz = Azo = A(No, N3) — (Na)

N2 R (5.3)
Aszz = (AN3)” — (No)
No=f1+hy  Na=hy—hy
classical or weakly nonclassicak$ <A°° A03> >0
Azo Ass
(300 303> < 0 = weakly nonclassical-Il or strongly nonclassical (5.30)
30 33

All other inequalities involving matrix elements such Ag;, Ag, A13... involve ‘phase
sensitive’ quantities going beyond andn,.
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Going back to the matrixA = (4,,), we see that from its properties we cannot
immediately distinguish between the classical and weakly nonclassical-1 situations, or
between the weakly nonclassical-Il and strongly nonclassical situations. In both the former,
A is positive semidefinite; while ifA is indefinite, one of the latter two must occur. It
would be interesting, for pair coherent states or squeezed thermal states for instance, to be
able to see, when is indefinite, whether we have a weakly nonclassical-1l or a strongly
nonclassical state, and whether this depends on and varies with the parameters in the state.
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